CMPS 161 -- Practice Test #3 Key

1. `int asteriskCount = 0;`
 `while (asteriskCount < 2000)`
 `{`
 ` print('*');`
 ` asteriskCount = asteriskCount + 1; // or asteriskCount++`
 `}`

2. `float toyPrice=1000.00F;`
 `float totalCost = 0.0F;`
 `while (toyPrice != 0)`
 `{`
 ` toyPrice = (float)readDouble("Toy price: ");`
 ` totalCost = totalCost + toyPrice;`
 `}`

3. `int total;`
 `int total = readInt("Where you like total to start? ");`
 `while (total <= 75)`
 `{`
 ` total = total * 2;`
 ` println("Total is up to " + total);`
 `}`

4. `char initial = 'Z';`
 `while (initial != 'X')`
 `{`
 ` initial = readLine("What is the new initial? ").charAt(0);`
 `}`

5.
 Value is -8.000000
 Value is -2.000000
 Final value is 1.000000

6.
 7
 10
 9
 4
 1

7. When should you use a do-while loop?

 When you don't know how many times the loop will execute, and you want it to execute the body at least once.

8. When should you use a while loop?

 When you don't know how many times the loop will execute, and it might not execute the body at all.
9. When should you use a for loop?

When you know beforehand (or the program can calculate prior to the loop execution) the number of times that the loop should execute.

10. For each of the following, write the heading for the for loop described. You need not concern yourself with the body of the loop -- only the heading is required.

a. Using a control variable called `curPos`, write a for loop heading which will give `curPos` a value of 1 the first time through the loop body, and a value of 1250 the last time through the loop body, and which will increase `curPos` by 1 each time through the loop.

```plaintext
for (curPos=1; curPos <=1250; curPos++)
```

b. Using a control variable called `curPos`, write a for loop heading which will give `curPos` a value of 5 the first time through the loop body, and a value of 27 the last time through the loop body, and which will increase `curPos` by 2 each time through the loop.

```plaintext
for (curPos=5; curPos <=27; curPos = curPos + 2)
```

c. Using a control variable called `curPos`, write a for loop heading which will give `curPos` a value of 1250 the first time through the loop body, and a value of 1 the last time through the loop body, and which will decrease `curPos` by 1 each time through the loop.

```plaintext
for (curPos=1250; curPos >= 1; curPos--)
```

d. Using a control variable called `curPos`, write a for loop heading which will give `curPos` a value of 1 the first time through the loop body, and a value of no more than 500 the last time through the loop body, and which will double `curPos` each time through the loop.

```plaintext
for (curPos=1; curPos <=500; curPos = curPos * 2)
```

11. What is the output of the following console program fragment? (don't worry about exact spacing)

```plaintext
void main()
{
 int a, b;
 for (a=1; a<5; a++)
  {
   for (b=0; b<a; b++)
     print("*" as string);
   println();
  }
 for (a=5; a>1; a--)
  {
   for (b=0; b<a; b++)
     print("*" as string);
   println();
  }
}
```
12. What is the output of the following console program fragment? (don't worry about exact spacing)

```java
void main()
{
    int k, m;
    k = 1;
    m = 2;
    while ((k<6) && (m<50))
    {
        m = m * 2;
        println(k + " " + m);
        m++; // Changed from 'm++' to prevent infinite loop
        k = k + 2;
    }
    println(k + " " + m);
}
```

```
1 4
3 10
5 22
7 23
```

13. What is the output of the following console program fragment? (don't worry about exact spacing)

```java
void main()
{
    int x, y;
    x = 0;
    y = 0;
    do
    {
        x = x + 2;
        y = x - 2;
        println(x + " " + y);
    }
    while (y <= 5);
}
```

```
2 0
4 2
6 4
8 6
```

14. Write a method called `distance` to implement the following interface description:

```java
/**
 * Calculate the distance between two Cartesian coordinates. This
 * method uses the standard distance equation where distance between
 * points (x1, y1) and (x2, y2) is the square root of x1 squared minus
 * x2 squared plus y1 squared minus y2 squared.
 *
 * @param x1. The x-coordinate of the first point as a real number.
 * @param y1. The y-coordinate of the first point as a real number.
 * @param x2. The x-coordinate of the second point as a real number.
 * @param y2. The y-coordinate of the second point as a real number.
 * @returns The real number distance between the first and second
 *          points.
 */

double distance(double x1, double y1, double x2, double y2)
{
    return Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
```
15. Write a method called box to implement the following interface description:

```java
/**
 * Display a box on a simple text output medium (such as a Program or
 * ConsoleProgram using asterisks (*)'s) to draw the just the edges of
 * the box.
 *
 * @param height. The number of asterisks high to make the box.
 * @param width. The number of asterisks wide to make the box.
 * @returns nothing.
 */
void box(int height, int width)
{
    int curRow, curCol;
    for (curCol = 0; curCol < width; curCol++)
        print('*');
    println();
    for (curRow = 0; curRow < height - 2; curRow++)
    {
        print('*');
        for (curCol = 0; curCol < width - 2; curCol++)
            print(' ');
        println('*');
    }
    for (curCol = 0; curCol < width; curCol++)
        print('*');
    println();
}
```

16. Write a method called askNumberQuestion to implement the following interface description:

```java
/**
 * Ask a question whose answer is a real number with a maximum and
 * minimum value. This method asks a question and gets a response
 * from the user. If the response is within the maximum and minimum
 * values (inclusive) it will be accepted, and the value input will be
 * returned. Otherwise, an error message is displayed and the question
 * re-asked until a valid response is obtained.
 *
 * @param question. A string containing the yes or no question to be
 *                  asked.
 * @param min.      The minimum response to this question, as a real
 *                  number.
 * @param max.      The maximum response to this question, as a real
 *                  number.
 * @returns Either a capital Y character or a capital N
 *             character, depending on if the answer was yes or no.
 */
double askNumberQuestion(String question, double min, double max)
{
    double answer;
    boolean badAnswer;
    do
    {
        answer = readDouble(question);
        badAnswer = answer < min || answer > max;
        if (badAnswer)
            println("The answer must be from " + min + " to " + max + ").;
    }
    while (badAnswer);
    return answer;
```
17. Write a `main` method which will ask the user for x and y real-number values for 2 points, where the x values must be between 2.5 and 1000, and the y values must be between -500 and +500. It will then calculate the distance between these two points and display the result. Use the `askNumberQuestion` and `distance` methods described above to implement this `main` method.

```java
void main()
{
    double startX = askNumberQuestion("What is the x-coordinate of the starting point? ", 2.5, 1000);
    double startY = askNumberQuestion("What is the y-coordinate of the starting point? ", -500, 500);
    double endX = askNumberQuestion("What is the x-coordinate of the ending point? ", 2.5, 1000);
    double endY = askNumberQuestion("What is the y-coordinate of the ending point? ", -500, 500);
    double curDistance = distance(startX, startY, endX, endY);
    println("The distance between the points is "+ curDistance);
}
```

18. Write a `main` method which will ask the user for a number of rows and a number of columns, where the number of rows or columns must be at least 1 and no more than 50. It will then convert the dimensions to integers, and display a box with these dimensions. Use the `askNumberQuestion` and `box` methods described above to implement this `main` method.

```java
void main()
{
    int numRows = (int)askNumberQuestion("How many rows in the box? ",1, 50);
    int numCols = (int)askNumberQuestion("How many columns in the box? ",1, 50);
    box(numRows, numCols);
}
```